352 research outputs found

    Metastable level properties of the excited configuration 4p64d84f4p^{6}4d^{8}4f

    Full text link
    Metastable levels in rhodium-like ions with the ground configuration 4p64d94p^{6}4d^{9} and the excited configurations 4p64d84f4p^{6}4d^{8}4f and 4p54d104p^{5}4d^{10} are investigated. The {\sl ab initio} calculations of the level energies, radiative multipole transition probabilities are performed in a quasirelativistic Hartree-Fock approximation employing an extensive configuration interaction based on quasirelativistic transformed radial orbitals. A systematic trends in behavior of calculated radiative lifetimes of the metastable levels are studied for the ions from Z=60Z=60 to Z=92Z=92. The significance of the radiative transitions of higher multipole order (M2M2 and E3E3) for the calculated radiative lifetimes is demonstrated and discussed.Comment: Lithuanian Journal of Physics (in press

    Methods, algorithms and computer codes for calculation of electron-impact excitation parameters

    Get PDF
    We describe the computer codes, developed at Vilnius University, for the calculation of electron-impact excitation cross sections, collision strengths, and excitation rates in the plane-wave Born approximation. These codes utilize the multireference atomic wavefunctions which are also adopted to calculate radiative transition parameters of complex many-electron ions. This leads to consistent data sets suitable in plasma modelling codes. Two versions of electron scattering codes are considered in the present work, both of them employing configuration interaction method for inclusion of correlation effects and Breit-Pauli approximation to account for relativistic effects. These versions differ only by one-electron radial orbitals, where the first one employs the non-relativistic numerical radial orbitals, while another version uses the quasirelativistic radial orbitals. The accuracy of produced results is assessed by comparing radiative transition and electron-impact excitation data for neutral hydrogen, helium and lithium atoms as well as highly-charged tungsten ions with theoretical and experimental data available from other sources.Comment: Lithuan. J. Physic

    Study of the correlation effects in Yb^+ and implications for parity violation

    Full text link
    Calculation of the energies, magnetic dipole hyperfine structure constants, E1 transition amplitudes between the low-lying states, and nuclear spin-dependent parity-nonconserving amplitudes for the ^2S_{1/2} - ^2D_{3/2,5/2} transitions in ^{171}Yb^+ ion is performed using two different approaches. First, we carried out many-body perturbation theory calculation considering Yb^+ as a monovalent system. Additional all-order calculations are carried out for selected properties. Second, we carried out configuration interaction calculation considering Yb as a 15-electron system and compared the results obtained by two methods. The accuracy of different methods is evaluated. We find that the monovalent description is inadequate for evaluation of some atomic properties due to significant mixing of the one-particle and the hole-two-particle configurations. Performing the calculation by such different approaches allowed us to establish the importance of various correlation effects for Yb^+ atomic properties for future improvement of theoretical precision in this complicated system.Comment: 11 pages;v2: minor changes and one reference adde

    Energy levels and radiative rates for transitions in Fe V, Co VI and Ni VII

    Full text link
    Energy levels, Land\'{e} gg-factors and radiative lifetimes are reported for the lowest 182 levels of the 3d4^4, 3d3^34s and 3d3^34p configurations of Fe~V, Co~VI and Ni~VII. Additionally, radiative rates (AA-values) have been calculated for the E1, E2 and M1 transitions among these levels. The calculations have been performed in a quasi-relativistic approach (QR) with a very large {\em configuration interaction} (CI) wavefunction expansion, which has been found to be necessary for these ions. Our calculated energies for all ions are in excellent agreement with the available measurements, for most levels. Discrepancies among various calculations for the radiative rates of E1 transitions in Fe~V are up to a factor of two for stronger transitions (f≥0.1f \geq 0.1), and larger (over an order of magnitude) for weaker ones. The reasons for these discrepancies have been discussed and mainly are due to the differing amount of CI and methodologies adopted. However, there are no appreciable discrepancies in similar data for M1 and E2 transitions, or the gg-factors for the levels of Fe~V, the only ion for which comparisons are feasible.Comment: This paper of 78 pages including 9 Tables will appear in ADNDT (2016

    Transition frequency shifts with fine-structure constant variation for Yb II

    Full text link
    In this paper we report calculations of the relativistic corrections to transition frequencies (q factors) of Yb II for the transitions from the odd-parity states to the metastable state 4f^{13}6s^2 ^2F_{7/2}^o. These transitions are of particular interest experimentally since they possess some of the largest q factors calculated to date and the 2F7/2o^2F_{7/2}^o state can be prepared with high efficiency. This makes Yb II a very attractive candidate for the laboratory search for variation of the fine-structure constant alpha.Comment: 5 page

    Energy levels and radiative rates for transitions in Cr-like Co IV and Ni V

    Full text link
    We report calculations of energy levels and radiative rates (AA-values) for transitions in Cr-like Co IV and Ni V. The quasi-relativistic Hartree-Fock (QRHF) code is adopted for calculating the data although GRASP (general-purpose relativistic atomic structure package) and flexible atomic code (FAC) have also been employed for comparison purposes. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST for a majority of the levels. However, there are discrepancies for a few levels of up to 3\%. The AA-values are listed for all significantly contributing E1, E2 and M1 transitions, and the corresponding lifetimes reported, although unfortunately no previous theoretical or experimental results exist to compare with our data.Comment: The paper will appear in ADNDT (2016) and in October 2015 on the we

    Atomic data for S II - Toward Better Diagnostics of Chemical Evolution in High-redshift Galaxies

    Get PDF
    Absorption-line spectroscopy is a powerful tool used to estimate element abundances in the nearby as well as distant universe. The accuracy of the abundances thus derived is, naturally, limited by the accuracy of the atomic data assumed for the spectral lines. We have recently started a project to perform the new extensive atomic data calculations used for optical/UV spectral lines in the plasma modeling code Cloudy using state-of-the-art quantal calculations. Here we demonstrate our approach by focussing on S II, an ion used to estimate metallicities for Milky Way interstellar clouds as well as distant damped Lyman-alpha (DLA) and sub-DLA absorber galaxies detected in the spectra of quasars and gamma-ray bursts (GRBs). We report new extensive calculations of a large number of energy levels of S II, and the line strengths of the resulting radiative transitions. Our calculations are based on the configuration interaction approach within a numerical Hartree-Fock framework, and utilize both non-ralativistic and quasirelativistic one-electron radial orbitals. The results of these new atomic calculations are then incorporated into Cloudy and applied to a lab plasma, and a typical DLA, for illustrative purposes. The new results imply relatively modest changes (~0.04 dex) to the metallicities estimated from S II in past studies. These results will be readily applicable to other studies of S II in the Milky Way and other galaxies.Comment: Accepted for publication in The Astrophysical Journal; 34 pages, 10 figure

    Atomic data for Zn II - Improving Spectral Diagnostics of Chemical Evolution in High-redshift Galaxies

    Get PDF
    Damped Lyman-alpha (DLA) and sub-DLA absorbers in quasar spectra provide the most sensitive tools for measuring element abundances of distant galaxies. Estimation of abundances from absorption lines depends sensitively on the accuracy of the atomic data used. We have started a project to produce new atomic spectroscopic parameters for optical/UV spectral lines using state-of-the-art computer codes employing very broad configuration interaction basis. Here we report our results for Zn II, an ion used widely in studies of the interstellar medium (ISM) as well as DLA/sub-DLAs. We report new calculations of many energy levels of Zn II, and the line strengths of the resulting radiative transitions. Our calculations use the configuration interaction approach within a numerical Hartree-Fock framework. We use both non-relativistic and quasi-relativistic one-electron radial orbitals. We have incorporated the results of these atomic calculations into the plasma simulation code Cloudy, and applied them to a lab plasma and examples of a DLA and a sub-DLA. Our values of the Zn II {\lambda}{\lambda} 2026, 2062 oscillator strengths are higher than previous values by 0.10 dex. Cloudy calculations for representative absorbers with the revised Zn atomic data imply ionization corrections lower than calculated before by 0.05 dex. The new results imply Zn metallicities should be lower by 0.1 dex for DLAs and by 0.13-0.15 dex for sub-DLAs than in past studies. Our results can be applied to other studies of Zn II in the Galactic and extragalactic ISM.Comment: accepted The Astrophysical Journa
    • …
    corecore